pandas分组函数画图
https://www.zhihu.com/question/317508787?utm_id=0分组函数:http://t.csdn.cn/uPzVO
方式:grouped = data.groupby('性别',as_index=False).agg({'企微存量好友数': 'mean', '企微存量激活好友订单数': 'mean'}),加个as_index=False
import numpy as np
import time, datetime
from datetime import datetime
import pandas as pd
data=pd.read_csv("/Users/liuyali/Desktop/data.csv")
import time
# print(data['企微存量好友数'])
# m=z.dropna(subset=['企微存量好友数'])#删除制定列的空置
# print(m)
# x = m["企微存量好友数"].mean()
# print(x)
#data["企微存量激活好友GMV"].fillna(x, inplace=True)
#print(data)
#print(data['date_time'])
# data['日期']=data['日期'].astype('str')
data['date_time'] = pd.to_datetime(data['date_time'],format='%Y-%m-%d')
data.dropna(inplace=True)
print(data)
import matplotlib.pyplot as plt
plt.plot(data['date_time'] ,data['企微存量好友数'] )
plt.show()
grouped = data.groupby('性别',as_index=False).agg({'企微存量好友数': 'mean', '企微存量激活好友订单数': 'mean'})
print(grouped)
#grouped=pd.DataFrame(grouped)
print(grouped['性别'])
import matplotlib.pyplot as plt
plt.bar(grouped['性别'], grouped['企微存量好友数'])
plt.xlabel("性别")
plt.ylabel("企微存量好友数")
plt.title("不同性别的企微存量好友数")
plt.show()
多个柱形图画法:https://www.zhihu.com/question/317508787?utm_id=0
关注公众号「水沐教育科技」,在手机上阅读所有教程,随时随地都能学习。内含一款搜索神器,免费下载全网书籍和视频。

微信扫码关注公众号